

LA-UR-19-23165

Approved for public release; distribution is unlimited.

Title: LANSCE Diagnostic Robot Localization

Author(s): Watkins, Heath Andrew

Montoya, Lucas Sigfredo

Intended for: Masters Thesis Presentation

Issued: 2019-04-08

LANSCE Diagnostic Robot Localization

April 15, 2019

Thesis Committee

- Christopher Hall
 - Committee Chair, UNM Faculty
- Svetlana Poroseva
 - Committee Member, UNM Faculty
- Meeko Oishi
 - Committee Member, UNM Faculty

In Partial Fulfillment of the Requirements for the Degree

Master of Science in Mechanical Engineering

By Lucas S. Montoya Spring 2019

The University of New Mexico

Overview

- Motivation
- Background
- Vehicle Model
- Landmark Acquisition
- Localization
- Simulation
- Conclusion
- Future Work

Motivation

- Add beam diagnostics capability, providing previously unknown measurements of accelerator such as thermal imaging and radiation measurements
- Provide test bed for fully autonomous mode for mobile robot, proving feasibility for autonomy

Background

- Autonomous Mobile Robots
 - Motion
 - Sensor perception
 - Localization
 - Environment: structured/unstructured
 - Map type: feature/grid/topological
 - Landmark density
 - Navigation
 - Obstacle avoidance
- LANSCE linear accelerator facility, 800 MeV proton beam
 - ¾ mile long LINAC
 - Radiation produced by proton interactions

Vehicle Model

- Chassis
 - Sensors
- Inverse Kinematics
 - Constraints
 - Model
- Odometry
 - Position estimation using motor encoders

Robot Chassis

- Dr. Robot Chassis
 - Tracked differential drive
 - Two 24V, 2.75A DC motors coupled with magnetic encoders
 - H 7" X W 21" X L 25.2"

Sensors

- Hokuyo URG-04LX-UG01 LIDAR
 - 4m, 240° sensor detectable range
 - 0.36° angular resolution
 - 10 Hz scan rate
 - Simulation suite contains Hokuyo LIDAR model

Simulated sensors output angular position

Inverse Kinematics: Constraints

Track velocity

$$\begin{bmatrix} v_R \\ v_L \end{bmatrix} = \begin{bmatrix} r\dot{\varphi}_R \\ r\dot{\varphi}_L \end{bmatrix}$$

• Lateral motion limitation

$$W(X)\dot{X} = \left[\sin\theta - \cos\theta \quad 0\right] \begin{bmatrix} x \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = 0;$$

A. Kelly, Mobile Robotics Mathematics, Models, and Methods, Cambridge University Press, 2014.

R. Dhaouadi and A.A. Hateb, "Dynamic Modelling of Differential Drive Mobile Robots using Lagrange and Newton-Euler Methodologies: A Unified Framework," *Advances in Robotics and Automation*, vol. 2, 2013.

Inverse Kinematics: Model

Motor velocity function

$$(\dot{\varphi_R}, \dot{\varphi_L}) = f(\dot{x}, \dot{y}, \dot{\theta}, g, r, l)$$

Robot frame to track velocity

$$\begin{bmatrix} v_R \\ v_L \end{bmatrix} = \begin{bmatrix} \dot{y} + \dot{\theta} \frac{l}{2} \\ \dot{y} - \dot{\theta} \frac{l}{2} \end{bmatrix} = \begin{bmatrix} 1 & \frac{l}{2} \\ 1 & -\frac{l}{2} \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{\theta} \end{bmatrix}$$

Track to motor angular velocities

$$\begin{bmatrix} \dot{\varphi}_R \\ \dot{\varphi}_L \end{bmatrix} = \begin{bmatrix} g \frac{v_R}{r} \\ v_L \\ g \frac{v_L}{r} \end{bmatrix} \qquad \begin{array}{l} \varphi = \text{motor ang} \\ r = \cos \text{ radius} \\ g = \text{ gear ratio} \\ l = \text{ track distant} \end{array}$$

Where:

 $\dot{\varphi} = \text{motor angular velocity}$

l = track distance

A. Kelly, Mobile Robotics Mathematics, Models, and Methods, Cambridge University Press, 2014.

Odometry: Displacement

Track Displacement

$$\begin{bmatrix} \Delta S_r \\ \Delta S_l \end{bmatrix} = \begin{bmatrix} \left(\frac{r\varphi_r}{g}\right)_n - \left(\frac{r\varphi_r}{g}\right)_{n-1} \\ \left(\frac{r\varphi_l}{g}\right)_n - \left(\frac{r\varphi_l}{g}\right)_{n-1} \end{bmatrix}$$

Track to robot frame displacement

$$\Delta s = \frac{\Delta s_r + \Delta s_l}{2}$$

$$\Delta \theta = \frac{\Delta s_r - \Delta s_l}{2l}$$

R. Siegwart and I.R. Nourbakhsh, *Introduction to Autonomous Mobile Robotics*, Cambridge, Massachusetts: MIT Press, 2004.

Odometry: Cartesian Displacement

Robot frame to Cartesian coordinates

$$\begin{bmatrix} \Delta x \\ \Delta y \\ \Delta \theta \end{bmatrix} = \begin{bmatrix} \Delta s * \cos\left(\theta + \frac{\Delta \theta}{2}\right) \\ \Delta s * \sin\left(\theta + \frac{\Delta \theta}{2}\right) \\ \frac{\Delta s_r - \Delta s_l}{2 * L} \end{bmatrix}$$

ICR offset correction

$$\begin{bmatrix} x \\ y \\ \theta \end{bmatrix} = \begin{bmatrix} x_{n-1} + ((d\cos\theta)_n - (d\cos\theta)_{n-1}) \\ y_{n-1} + ((d\sin\theta)_n - (d\sin\theta)_{n-1}) \\ \theta \end{bmatrix}$$

J.L. Crowley and P. Reignier, "Asynchronous Control of Rotation and Translation for a Robot Vehicle," *Journal of Robotics and Autonomous Systems*, Feb. 1993.

Landmark Acquisition

- Landmark selection
- Line extraction
 - Successive Edge Following
 - Split and Merge
- Feature extraction
 - Corner feature extraction
 - Beam structure feature extraction
 - Wall feature extraction

Line Extraction

- LIDAR point cloud raw scan
- Remove extraneous points
- Successive Edge Following
- Split-and-Merge

Successive Edge Following

• Euclidean distance between adjacent points

$$D(i, i + 1) = \sqrt{(x_i - x_{i+1})^2 (y_i - y_{i+1})^2}$$

Adaptive threshold

$$\bar{r} = \frac{\sum_{i=1}^{n} r_i}{n}; \quad \Delta D = k\bar{r}$$

Segmentation criteria

$$f(k; j; 0,1) = \begin{cases} D(i, i+1) < \Delta D; & [x_i, y_i], j+1 \\ D(i, i+1) \ge \Delta D; & k+1, j=0 \end{cases}$$

A. Siadat, A. Kaske, S. Klausmann, M. Dufaut, and R. Husson, "An Optimized Segmentation Method for a 2D Laser Scanner Applied to Mobile Robot Navigation," *In Proceedings of the 3rd IFAC Symposium on Intelligent Components and Instruments for Control Applications*, 2007.

Y. Bu, H. Zhang, H. Wang, R. Liu, and K. Wang, "Two Dimensional Laser Feature Extraction Based on Improved Successive Edge Following," *Applied Optics*, May 2015.

Split and Merge

Perpendicular distance

$$perp.\,dist. = \frac{|(y_2 - y_1)x_0 - (x_2 - x_1)y_0 + x_2y_1 - y_2x_1|}{\sqrt{(y_2 - y_1)^2(x_2 - x_1)^2}}$$

V. Ngyen, A. Martinelli, N. Tomatis, and R. Siegwart, "A Comparison of Line Extraction Algorithms using 2D Laser Rangefinder for Indoor Mobile Robotics," *In Proceedings of Conference on IROS 2005*, Edmonton, Canada, 2005.

M. Namoshe, O. Matsebe, and N. Tlale, "Feature Extraction: Techniques for Landmark Based Navigation System," *Intech*, 2010.

Landmark Selection

- Repeatable, accurate, unique, static, and frequent
- Corner feature extraction
 - Orthogonality check
- Beam structure feature extraction
 - I-Beam
- Wall extraction
 - Robot bearing
 - Abbe error minimization

Corner Feature Extraction

• Orthogonality check, θ found by dot product

$$\vec{l}_n \cdot \vec{l}_{n+1} = ||\vec{l}_n|| ||\vec{l}_{n+1}|| \cos \theta$$

$$\theta = a\cos\left(\frac{\vec{l}_n \cdot \vec{l}_{n+1}}{||\vec{l}_n|| ||\vec{l}_{n+1}||}\right); \quad 1.54 \ rad \le \theta \le 1.6 \ rad$$

Line-Line intersection defined by determinants

$$X_{x} = \left(\frac{(x_{1}y_{2} - y_{1}x_{2})(x_{3} - x_{4}) - (x_{1} - x_{2})(x_{3}y_{4} - y_{3}x_{4})}{(x_{1} - x_{2})(y_{3} - y_{4}) - (y_{1} - y_{2})(x_{3} - x_{4})}\right)$$

$$X_{y} = \left(\frac{(x_{1}y_{2} - y_{1}x_{2})(y_{3} - y_{4}) - (y_{1} - y_{2})(x_{3}y_{4} - y_{3}x_{4})}{(x_{1} - x_{2})(y_{3} - y_{4}) - (y_{1} - y_{2})(x_{3} - x_{4})}\right)$$

M. Namoshe, O. Matsebe, and N. Tlale, "Feature Extraction: Techniques for Landmark Based Navigation System," *Intech*, 2010.

Beam Structure Feature Extraction

Collinearity

$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} = \overrightarrow{AD}$$

 Length approximated, and midpoint is interpolated between line segments as landmark location

Wall Feature Extraction

- Abbe error accumulates over long distances
- Long, observable, unobstructed wall in beam tunnel
- Validation gates
 - World map position, must be greater than 3m from robot origin
 - Minimum 2m unbroken segment length
- Robot bearing calculated

$$\theta = atan2(y_2 - y_1, x_2 - x_1)$$

Localization

- Extended Kalman Filter
 - Linearizes state transition and measurement models
 - Map based estimator
 - Comprised of three steps:
 - Motion Update
 - Data Association
 - Measurement Update

EKF: Initialization

State Matrix

$$X = \begin{bmatrix} x_r \\ y_r \\ \theta_r \\ x_i \\ y_i \end{bmatrix}$$

- Estimation Covariance Matrix P
 - 3+2n x 3+2n Identity matrix
 - Initially independent

Motion Update: State Transition

Predicted State Transition Matrix

$$f(X,u) = X_{t+1}^{-} = \begin{bmatrix} x + \Delta x \\ y + \Delta y \\ \theta + \Delta \theta \end{bmatrix} = \begin{bmatrix} x + \Delta s \cos \theta \\ y + \Delta s \sin \theta \\ \theta + \Delta \theta \end{bmatrix}$$

Jacobian State Transition Matrix

$$F = J_f(x, y, \theta) = \begin{bmatrix} \frac{\delta X_1}{\delta x} & \frac{\delta X_1}{\delta y} & \frac{\delta X_1}{\delta \theta} \\ \frac{\delta X_2}{\delta x} & \frac{\delta X_2}{\delta y} & \frac{\delta X_2}{\delta \theta} \\ \frac{\delta X_3}{\delta x} & \frac{\delta X_3}{\delta y} & \frac{\delta X_3}{\delta \theta} \end{bmatrix} = \begin{bmatrix} 1 & 0 & -\sin\theta\Delta s \\ 0 & 1 & \cos\theta\Delta s \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -\Delta y \\ 0 & 1 & \Delta x \\ 0 & 0 & 1 \end{bmatrix}$$

Process Noise

$$Q = WCW^{T} = \begin{bmatrix} C \Delta x^{2} & C \Delta x \Delta y & C \Delta x \Delta \theta \\ C \Delta y \Delta x & C \Delta y^{2} & C \Delta y \Delta \theta \\ C \Delta \theta \Delta y & C \Delta \theta \Delta y & C \Delta \theta^{2} \end{bmatrix}; where W = \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta \theta \end{bmatrix}$$

S. Riisgaard and M.R. Blas, "Slam for Dummies," *A Tutorial Approach to Simultaneous Localization and Mapping*, vol. 22, June, pp. 1-127, 2004.

L. Chen, H. Hu, and K. McDonald-Maier, "EKF Based Mobile Robot Localization," *Emerging Security Technologies* (EST) Third Internation Conference, Sept. 2012.

Motion Update: Error Covariance

Robot Estimation Error Covariance

$$P^{rr} = FPF + Q$$

Robot-Landmark Estimation Error Covariance

$$P^{ri} = FP^{ri}$$

Estimation Error Covariance Matrix

$$P = \begin{bmatrix} P^{rr} & P^{ri} \\ P^{ir} & P^{ii} \end{bmatrix}$$
; where P^{ii} is landamark covariance

Data Association

- Individual Compatibility Nearest Neighbor
 - Uses Mahalonobis Distance and Chi-Squared distribution for compatibility
 - Mahalonobis distance accounts for covariance between variables, directional variance, and reduces to Euclidean distance if uncorrelated
- Compatibility Optimization
 - Reconsiders associations, if there are more than one possible hypothesis
 - Chooses "best" hypothesis

ICNN: Measurement Model

Range/Bearing Measurement Model

$$h = \begin{bmatrix} range \\ bearing \end{bmatrix} = \begin{bmatrix} \sqrt{(\lambda_x - x)^2 + (\lambda_y - y)^2} \\ \tan^{-1}\left(\frac{\lambda_y - y}{\lambda_x - x}\right) - \theta \end{bmatrix}$$

Where, (λ_x, λ_y) are landmark locations

Jacobian of Measurement Model

$$H = \begin{bmatrix} \frac{\delta r}{\delta x} & \frac{\delta r}{\delta y} & \frac{\delta r}{\delta \theta} \\ \frac{\delta b}{\delta x} & \frac{\delta b}{\delta y} & \frac{\delta b}{\delta \theta} \end{bmatrix} = \begin{bmatrix} \frac{x - \lambda_x}{r} & \frac{y - \lambda_y}{r} & 0 \\ \frac{\lambda_y - y}{r^2} & \frac{\lambda_x - x}{r^2} & -1 \end{bmatrix}$$

T.Bailey, J. Nieto, J. Guivant, M. Stevens, and E. Nebot, "Consistency of the EKF-SLAM Algorithm," *Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems*, Oct. 2006.

ICNN: Validation Gate

• Innovation μ , where z is LIDAR measurement

$$\mu = z - h$$

Measurement Noise

$$R = \begin{bmatrix} rc & 0 \\ 0 & bd \end{bmatrix}$$

Innovation Covariance

$$S = HPH^T + R$$

Mahalonobis Distance

$$D_{ij}^2 = \mu^T S^{-1} \mu$$

 Chi-squared Distribution Validation Gate, with two degrees of freedom and 95% cumulative probability

$$D_{ij}^2 < \chi_{d,\alpha}^2$$

P.C. Mahalanobis, "On the Generalized Distance in Statistics," *In Proceedings of the National Institute of Sciences of India*, vol. 2, 1936.

Y. Bar-Shalom and T.E. Fortmann, *Tracking and Data Association*, Academic Press In., 1988.

J. Neira and J.D. Tardos, "Data Association in Stochastic Mapping using the Joint Compatibility Test," *IEEE Transactions on Robotics and Automation*, vol. 17, Issue 6, pp 890 – 897, Dec. 2001.

Compatibility Optimization

- Reconsiders associations if there is more than one feature associated with a single landmark
- Minimum Maholonobis distance is taken to be correct feature from set of features considered for single landmark
- Necessary primarily for beam structure features as there are multiple in close proximity

Measurement Update

Kalman Gain

$$K = P^-H^T(S)^{-1}$$

Robot State Update

$$X_{t+1} = X_{t+1}^- + K\mu$$

Error Covariance Update

$$P_{t+1} = (I - KH)P^-$$

- Entire process repeated for each observed and associated feature
- S. Thrun, W. Burgard, and D. Fox, *Probabilistic Robotics*, Cambridge, Massachusetts: MIT Press, 2006.
- H. Durrant-Whyte and T. Bailey, "Simultaneous Localization and Mapping," IEEE Robotics & Automation, June 2006.

M.R. Nepali, D.A.H. Prasad, S. Balasubramaniam, V. EN, and Ashutosh, "A Simple Integrative Solution for Simultaneous Localization and Mapping," *International Journal of Robotics and Automation*, vol. 5, Issue 2, 2014.

LabVIEW Robotics Simulation

- Based on Open
 Dynamics Engine
- CAD importer
- Robot model builder
- Environment simulator wizard

Simulation Results

Error Calculation

Ground Truth Vs. Estimation

$$Error_{p} = \sqrt{(x_{r,e} - x_{gt})^{2} + (y_{r,e} - y_{gt})^{2}}$$
$$Error_{\theta} = |\theta_{r,e} - \theta_{gt}|$$

Conclusion

- Given ideal conditions, localization of the robot can be realized within 0.3 meters and 0.1 radians in heading
- Robot is sensitive to Abbe error, wall was crucial in maintaining position without diverging

Future Work

- Beam tunnel experimentation using robot hardware
 - WLAN communication
 - Develop FPGA and Real Time code to support localization
- Facilitate full robot autonomy
 - Obstacle Avoidance
 - Navigation algorithm development
- Research additional diagnostic sensors to maximize the potential for providing substantial measurements to physicists

Thank you

Questions?